The Internet of Medical Things (IoMT) is the latest advancement in the Internet of Things (IoT). Researchers are increasingly drawn to its vast potential applications in secure healthcare systems. The growing use of internet-connected medical device sensors has significantly transformed healthcare, necessitating the development of robust methodologies to assess their integrity. As access to computer networks continues to expand, these sensors have become vulnerable to a wide range of security threats, thereby compromising their integrity. To prevent such lapses, it is essential to understand the complexities of the operational environment and to systematically identify technical vulnerabilities. This paper proposes a unified hesitant fuzzy-based healthcare system for assessing IoMT sensor integrity. The approach integrates the hesitant fuzzy Analytic Network Process (ANP) and the hesitant fuzzy Technique for Order Preference by Similarity to the Ideal Solution (TOPSIS). In this study, a hesitant fuzzy ANP is employed to construct a comprehensive network that illustrates the interrelationships among various integrity criteria. This network incorporates expert input and accounts for inherent uncertainties. The research also offers sensitivity analysis and comparative evaluations to show that the suggested method can analyse many medical device sensors. The unified hesitant fuzzy-based healthcare system presented here offers a systematic and valuable tool for informed decision-making in healthcare. It strengthens both the integrity and security of healthcare systems amid the rapidly evolving landscape of medical technology. Healthcare stakeholders and beyond can significantly benefit from adopting this integrated fuzzy-based approach as they navigate the challenges of modern healthcare.
Loading....